15	30	Cŀ		7)		D	ALIBRATION UE DATE: ary 11, 2020
vir	Ce	rtifa	a I		-=	2002/02/2020	ation	
-	12 10 124		Contraction of the local division of the loc				0.97	
Cal. Date:	January 11,	2019	Rootsn	neter S/N:	438320		293	°К
Operator:	Jim Tisch					Pa:	760.7	mm Hg
Calibration	Model #:	TE-5025A	Calib	rator S/N:	0005			
		Vol. Init	Mat. Plant	avet	ATT	4.0		1
	Bun	10.000	Vol. Final	ΔVol.	∆Time (min)	ΔP	ΔH (i= μ20)	
	Run	(m3)	(m3)	(m3)	(min) 1.4090	(mm Hg)	(in H2O)	
	1	1	2	1	the state of the s	3.2	2.00	1
	2	3	4	1	0.9980	6.4	4.00	1
	3	5	6	1	0.8900	7.8	5.00	1
	4	9	8	1	0.8450	8.7	5.50	4
	>	э	10	1	0.6990	12.6	8.00	
			D	ata Tabulat	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$	Tstd)		Qa	√∆н(та/Ра)	
	(m3)	(x-axis)	(y-axis	5)	Va	(x-axis)	(y-axis)	
	1.0138	0.7195	1.426	9	0.9958	0.7067	0.8777	
	1.0095	1.0115	2.018	0	0.9916	0.9936	1.2412	
	1.0076	1.1321	2.256	1	0.9897	1.1121	1.3877	
	1,0064	1.1910	2.366	3	0.9886	1.1699	1.4555	
	1,0012	1.4323	2.853		0.9834	1.4059	1.7553	
		m=	1.998			m=	1.25149	
	QSTD	b=	-0.008		QA	b=	-0.00543	
		r=	0.999	97		r=	0.99997	
				Calculation	15			
			/Pstd)(Tstd/Ta) [∆Vol((Pa-∆i	P)/Pa)	
	Qstd=	√std/∆Time			Qa=	Va/∆Time		
			For subseque	ent flow rat	e calculation	ts:		
	Qstd=	1/т ((√Δн(-	$\frac{Pa}{Pstd}$ $\left(\frac{Tstd}{Ta}\right)$)-b)	Qa=	$1/m \left(\sqrt{\Delta F} \right)$	(Ta/Pa))-b)	
	Standard	Conditions						
Tstd:	and the second se			- E		RECA	LIBRATION	
Pstd:		mm Hg						1000
		еү					nnual recalibratio	
		er reading (in					Regulations Part !	The second s
		ter reading (mm Hg)				, Reference Meth	
and a second s	osolute temp	essure ("K)					ended Particulati re, 9.2.17, page 1	
las actual he								

ch Environmental, Inc.

Ľ

5 South Miami Avenue

lage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS001	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		291		Kelvin	Pressure, P	а	1	015 mmHg	
			Orifice Tr	ansfer Sta	andard Infor	mation			
Equipment No.		Ori0005	1	Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-19			(H x	P _a / 101	3.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-20			=	m _c x	Q _{std} + b _c		
				Calibratio	on of TSP				
Calibration	Manometer Reading			G) _{std}	Contin	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	axis	(0	CFM)	Y-axis	
1	1.4	1.4	2.8	0.8	8524		22	22.2817	
2	2.4	2.4	4.8	1.1	1147		34	34.4354	
3	3.6	3.6	7.2	1.3	3642		42	42.5378	
4	4.6	4.6	9.2	1.5	5415		47	47.6018	
5	5.9	5.9	11.8	1.1	7452		54	54.6914	
By Linear Regression of	Y on X								
	Slope, m	=	35.4	579	Inte	ercept, b =	-6	.6215	
Correlation Co	pefficient*	=	0.99	958					
Calibration	Accepted	=	Yes/ł	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appro	priate.					
Remarks :						
Calibrated by	:	Henry Lau		Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	_	Date	:	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS001	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		294	,	Kelvin	Pressure, P	a	1	1013 mmHg		
			Orifice T	ransfer Sta	andard Inform	mation				
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882		
Last Calibration Date		11-Jan-19			(H x	(P _a / 10)13.3 x 298 /	T _a) ^{1/2}		
Next Calibration Date		11-Jan-20			= m _c x Q _{std} + b _c					
	Calibration of TSP									
Calibration	Manometer Reading			C	Q _{std}	Conti	nuous Flow	IC		
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)			
	(up)	(down)	(difference)	Х-	-axis		(CFM)	Y-axis		
1	1.5	1.5	3.0	0.8	8768		23	23.1525		
2	2.4	2.4	4.8	1.1	1079		33	33.2188		
3	3.4	3.4	6.8	1.:	3178		40	40.2652		
4	4.5	4.5	9.0	1./	5154		50	50.3315		
5	5.6	5.6	11.2	1.(6900		56	56.3713		
By Linear Regression of `	Y on X									
	Slope, m	=	41.08	841	Int	ercept, b	=	2.8064		
Correlation Co	cefficient*	=	0.99	984			_			
Calibration	Accepted	=	Yes/	No**						

* if Correlation Coefficient < 0.990, check and recalibration again.

:

:

Henry Lau

16-Apr-19

** Delete as appropriate.

Remarks :

Calibrated by

Date

Checked by

Date

Dean Chan

:

•

16-Apr-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS002	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition										
Temperature, T _a		291		Kelvin	Pressure, P	а	1	015 mmHg			
			Orifice Tr	ansfer Sta	andard Infor	mation					
Equipment No.		Ori0005	5	Slope, m _c	1.998	61	Intercept, bc	-0.00882			
Last Calibration Date	11-Jan-19				(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}			
Next Calibration Date		11-Jan-2	0		=	m _c :	xQ _{std} +b _c				
	Calibration of TSP										
Calibration	Manometer Reading			c	Q _{std}	Conti	nuous Flow	IC			
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$				
	(up)	(down)	(difference)	X-	axis		(CFM)	Y-axis			
1	1.7	1.7	3.4	0.	9388		24	24.3073			
2	2.4	2.4	4.8	1.	1147		33	33.4225			
3	4.0	4.0	8.0	1.4	4377		42	42.5378			
4	5.1	5.1	10.2	1.	6229		50	50.6402			
5	6.2	6.2	12.4	1.	7889		58	58.7427			
By Linear Regression of	Y on X										
	Slope, m	=	38.5	348	Inte	ercept, b	= -11	.2706			
Correlation Co	pefficient*	=	0.99	949							
Calibration	Calibration Accepted = Yes/ No **										

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	: _	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS002	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		294		Kelvin	Pressure, P	a	1	013 mmHg	
			Orifice T	ransfer Sta	Indard Inform	nation			
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date	11-Jan-19				(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c >	Q _{std} + b _c		
				Calibratio	n of TSP				
Calibration	Manometer Reading			c) _{std}	Contir	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	axis	(CFM)	Y-axis	
1	1.7	1.7	3.4	0.9	9331		23	23.1525	
2	2.5	2.5	5.0	1.1	1306		34	34.2254	
3	3.6	3.6	7.2	1.3	3559		41	41.2719	
4	5.0	5.0	10.0	1.9	5971		48	48.3183	
5	5.6	5.6	11.2	1.0	6900		55	55.3647	
By Linear Regression of	Y on X								
	Slope, m	=	39.1	656	Int	ercept, b =	-12	2.0687	
Correlation Co	pefficient*	=	0.99	902					
Calibration	Accepted	=	Yes/ł	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Dean Chan
Date	:	16-Apr-19	Date	:	16-Apr-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA3a	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS012	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		291		Kelvin	Pressure, P	а	1	015 mmHg	
Orifice Transfer Standard Information									
Equipment No.		Ori0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-19			(H x	P _a / 10)13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0	= m _c x Q _{std} + b _c					
Calibration of TSP									
Calibration	Manometer Reading			c) _{std}	Conti	nuous Flow	IC	
Point	H (inches of water)		(m ³	³ / min.) Recor		corder, W	$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$		
	(up)	(down)	(difference)	Х-	X-axis (C		(CFM)	Y-axis	
1	1.3	1.3	2.6	0.	8215		30	30.3841	
2	2.0	2.0	4.0	1.	0179	38		38.4866	
3	3.1	3.1	6.2	1.:	2662		44	44.5634	
4	4.0	4.0	8.0	1.	4377		49	49.6274	
5	5.0	5.0	10.0	1.	6069		54	54.6914	
By Linear Regression of	Y on X								
	Slope, m	=	29.9	992	Inte	ercept, b	=6.	6497	
Correlation Co	pefficient*	=	0.99	964					
Calibration Accepted = Yes/ No **									

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
<u> </u>					
Calibrated by	:	Henry Lau	Checked b	by :	Chan Ka Chun
Date	:	18-Feb-19	Date	:	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA3a	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS012	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		294		Kelvin	Pressure, P	a	1	1013 mmHg
			Orifice Tr	ransfer Sta	andard Inforr	nation		
Equipment No.		0005		Slope, m _c	1.9986	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-19			(H x	P _a / 10)13.3 x 298 /	T _a) ^{1/2}
Next Calibration Date		11-Jan-20	0		=	m _c	x Q _{std} + b _c	
Calibration of TSP								
Calibration	Manometer Reading			C	ຊ _{std}	Conti	nuous Flow	IC
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	-axis	(CFM)		Y-axis
1	1.2	1.2	2.4	0.	7847		28	28.1857
2	2.1	2.1	4.2	1./	0366		36	36.2387
3	3.1	3.1	6.2	1.:	2585		40	40.2652
4	4.2	4.2	8.4	1./	4642		48	48.3183
5	5.1	5.1	10.2	1./	6130		51	51.3382
By Linear Regression of	Y on X							
	Slope, m	=	28.03	357	Int/	ercept, b	=6	.3461
Correlation Co	cefficient*	=	0.99) 50	_			
Calibration	Accepted	=	Yes/ I	No**	_			

* if Correlation Coefficient < 0.990, check and recalibration again.

:

:

Henry Lau

16-Apr-19

** Delete as appropriate.

Remarks :

Calibrated by

Date

Checked by

Date

Dean Chan

:

•

16-Apr-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS004	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		291		Kelvin	Pressure, P	a	1	015 mmHg	
Orifice Transfer Standard Information									
Equipment No.		Ori0005	i	Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date	11-Jan-19				(H x P _a / 1013.3 x 298 / T _a) ^{1/2}				
Next Calibration Date		11-Jan-20 = $m_c x 0$				κQ _{std} +b _c			
Calibration of TSP									
Calibration	Manometer Reading			G	l _{std}	Contir	nuous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31		
	(up)	(down)	(difference)	X-	axis	(CFM)		Y-axis	
1	1.4	1.4	2.8	0.8	3524		22	22.2817	
2	2.2	2.2	4.4	1.0	0674		33	33.4225	
3	2.9	2.9	5.8	1.:	2248		40	40.5122	
4	4.1	4.1	8.2	1.4	4555		47	47.6018	
5	5.8	5.8	11.6	1.	7304		58	58.7427	
By Linear Regression of	Y on X								
	Slope, m	=	40.4	458	Inte	ercept, b	= -10	0.6963	
Correlation Co	pefficient*	=	0.99	957					
Calibration Accepted = Yes				\0 **					

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	: _	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS004	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		294		Kelvin	Pressure, P	a	1	1013 mmHg
			Orifice Tr	ransfer Sta	andard Inforr	mation		
Equipment No.		0005		Slope, m _c	1.9986	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-19			(H x	P _a / 10)13.3 x 298 /	T _a) ^{1/2}
Next Calibration Date		11-Jan-2	0		=	m _c	x Q _{std} + b _c	
Calibration of TSP								
Calibration	Manometer Reading			C	Q _{std}	Conti	nuous Flow	IC
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	-axis		(CFM)	Y-axis
1	1.3	1.3	2.6	0./	8165		20	20.1326
2	2.1	2.1	4.2	1./	0366		30	30.1989
3	2.8	2.8	5.6	1.	1963		36	36.2387
4	4.0	4.0	8.0	1./	4290		43	43.2851
5	5.6	5.6	11.2	1./	6900		52	52.3448
By Linear Regression of	Y on X							
	Slope, m	=	36.1	142	Inte	ercept, b	=8	8.1138
Correlation Co	cefficient*	=	0.99) 67				
Calibration	Accepted	=	Yes/ I	No**	_			

* if Correlation Coefficient < 0.990, check and recalibration again.

Henry Lau

16-Apr-19

** Delete as appropriate.

:

:

Remarks :

Calibrated by

Checked by

Date

Dean Chan

:

•

16-Apr-19

Date

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS010	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		291		Kelvin	Pressure, P	a	1	015 mmHg
			Orifice Tr	ansfer Sta	andard Inform	mation		
Equipment No.		Ori0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-19			(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}
Next Calibration Date		11-Jan-2	0		=	m _c :	$x Q_{std} + b_{c}$	
Calibration of TSP								
Calibration	Manometer Reading			c) _{std}	Conti	nuous Flow	IC
Point	H (inches of water)		(m ³	/ min.) Recor		order, W	$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$	
	(up)	(down)	(difference)	X-	X-axis (C		(CFM)	Y-axis
1	1.2	1.2	2.4	0.	7895		37	37.4738
2	2.0	2.0	4.0	1.	0179	42		42.5378
3	3.1	3.1	6.2	1.:	2662		50	50.6402
4	4.0	4.0	8.0	1.	4377		56	56.7171
5	5.0	5.0	10.0	1.	6069		61	61.7811
By Linear Regression of	Y on X							
	Slope, m	=	30.4	544	Inte	ercept, b	= 12	.5644
Correlation Co	pefficient*	=	0.99	972				
Calibration Accepted = Yes/No**								

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appro	priate.				
Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	:	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS010	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		294		Kelvin	Pressure, P	a	1	1013 mmHg	
Orifice Transfer Standard Information									
Equipment No.		0005		Slope, m _c	1.9986	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c >	x Q _{std} + b _c		
Calibration of TSP									
Calibration	Manometer Reading			C	۵ _{std}	Contir	nuous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	-axis	(CFM)		Y-axis	
1	1.1	1.1	2.2	0.	7515		34	34.2254	
2	2.0	2.0	4.0	1./	0117		39	39.2586	
3	3.0	3.0	6.0	1.:	2381		45	45.2984	
4	3.8	3.8	7.6	1.:	3929		50	50.3315	
5	5.4	5.4	10.8	1./	6596		55	55.3647	
By Linear Regression of	Y on X								
	Slope, m	=	24.12	230	Inte	ercept, b =	= 15	5.6881	
Correlation Coefficient* = 0.99			0.99	962					
Calibration	Accepted	=	Yes/ I	No**	_				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :			
Calibrated by	:	Henry Lau	

16-Apr-19

Checked by

Dean Chan

Date

16-Apr-19

:

Date

Calibrated by

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1e	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS007	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		291		Kelvin	Pressure, P	а	1	015 mmHg
Orifice Transfer Standard Information								
Equipment No.		Ori0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}
Next Calibration Date		11-Jan-2	0		=	m _c :	xQ _{std} +b _c	
Calibration of TSP								
Calibration	Manometer Reading			c) _{std}	Conti	nuous Flow	IC
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$	
	(up)	(down)	(difference)	X-	X-axis (CF		(CFM)	Y-axis
1	1.8	1.8	3.6	0.	9659		22	22.2817
2	2.4	2.4	4.8	1.	1147		31	31.3969
3	3.8	3.8	7.6	1.4	4014		41	41.5250
4	5.0	5.0	10.0	1.	6069		50	50.6402
5	6.1	6.1	12.2	1.	7744		56	56.7171
By Linear Regression of	Y on X							
Slope, m = 41.5			898	Inte	ercept, b	= -16	6.5769	
Correlation Co	pefficient*	=	0.99	969				
Calibration Accepted = Yes/			Vo **					

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :						
Calibrated by	:	Henry Lau		Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	_	Date	:	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1e	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS007	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		294		Kelvin	Pressure, P	a	1	013 mmHg
Orifice Transfer Standard Information								
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}
Next Calibration Date		11-Jan-2	0		=	m _c >	$Q_{std} + b_{c}$	
Calibration of TSP								
Calibration	Manometer Reading			c	Q _{std}	Contir	uous Flow	IC
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	axis	(CFM)		Y-axis
1	1.7	1.7	3.4	0.9	9331		22	22.1459
2	2.5	2.5	5.0	1.	1306		30	30.1989
3	3.7	3.7	7.4	1.3	3745		39	39.2586
4	4.8	4.8	9.6	1.	5650		49	49.3249
5	5.6	5.6	11.2	1.0	6900		55	55.3647
By Linear Regression of	Y on X							
	Slope, m	=	43.6	864	Int	ercept, b =	= -19	9.2224
Correlation Co	pefficient*	=	0.99)77				
Calibration Accepted = Yes/			\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

Henry Lau

16-Apr-19

** Delete as appropriate.

:

:

Remarks :

Calibrated by

Date

Checked by

Date

Dean Chan

:

•

16-Apr-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1w	Calbration Date	:	18-Feb-19
Equipment no.	:	HVS008	Calbration Due Date	:	20-Apr-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		291		Kelvin	Pressure, P	a	1	015 mmHg	
	Orifice Transfer Standard Information								
Equipment No.		Ori0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10)13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c	xQ _{std} +b _c		
Calibration of TSP									
Calibration	Manometer Reading			c	Q _{std}	Conti	nuous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	X-axis (Cl		(CFM)	Y-axis	
1	1.8	1.8	3.6	0.	9659		24	24.3073	
2	2.6	2.6	5.2	1.	1600	34		34.4354	
3	4.0	4.0	8.0	1.4	4377		42	42.5378	
4	5.2	5.2	10.4	1.	6386		50	50.6402	
5	6.4	6.4	12.8	1.3	8174		54	54.6914	
By Linear Regression of	Y on X								
Slope, m = 35.2			899	Inte	ercept, b	= -8	.2225		
Correlation Coefficient* = 0.99			0.99	934					
Calibration Accepted = Yes/				\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	18-Feb-19	Date	: _	18-Feb-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1w	Calbration Date	:	16-Apr-19
Equipment no.	:	HVS008	Calbration Due Date	:	16-Jun-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		294		Kelvin	Pressure, P	a	1	1013 mmHg
			Orifice T	ransfer Sta	andard Inform	nation		
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}
Next Calibration Date		11-Jan-2	0		=	m _c x	$Q_{std} + b_{c}$	
				Calibratio	on of TSP			
Calibration	Mar	nometer R	eading	G	Q _{std}	Contin	uous Flow	IC
Point	Н (inches of	water)	(m ³	/ min.)	Rec	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis	(CFM)	Y-axis
1	1.7	1.7	3.4	0.9	9331		23	23.1525
2	2.5	2.5	5.0	1.1	1306		32	32.2122
3	3.9	3.9	7.8	1.4	4111		40	40.2652
4	5.0	5.0	10.0	1.5	5971		50	50.3315
5	6.1	6.1	12.2	1.1	7636		56	56.3713
By Linear Regression of	Y on X							
	Slope, m	=	39.5	164	Int	ercept, b =	-10	3.5574
Correlation Co	pefficient*	=	0.99	961				
Calibration	Accepted	=	Yes/ł	\o **				

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Dean Chan
Date	:	16-Apr-19	Date	:	16-Apr-19

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0222 02		Page	1 of 2
Item tested				
Description:	Sound Level Mete	r (Type 1)	Microphone	Preamp
Manufacturer:	B & K		B & K	B & K
Type/Model No	2250		4950	ZC0032
Serial/Equipment No.:	2701778		2755097	19223
Adaptors used:	-		-	-
Item submitted by				
Customer Name:	Lam Geotechnics	Limited.		
Address of Customer:	-			
Request No.:	-			
Date of receipt:	22-Feb-2019			
Date of test:	25-Feb-2019			
Reference equipment	used in the calib	ration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019	CIGISMEC
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Signal generator	DS 360	61227	26-Dec-2019	CEPREI
Ambient conditions				
Temperature:	21 ± 1 °C			
Relative humidity:	55 ± 10 %			
Air pressure:	1005 ± 5 hPa			
Test specifications				

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of <u>+</u>20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documenter on worksheets.

Approved Signatory: Fen Junqi

26-Feb-2019 Company Chop:

Comments: The results reported in his certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道 37號利達中心 12樓

香港寅竹坑狙37號利莲中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No..

19CA0222 02

2 of

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
O . If many material mains	A	Dees	0.2	
Self-generated noise	A	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
0 0	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
a f	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	0	- End -	1	
Calibrated by:	El	Checked by:	$1 \sim \gamma$	
	Fong Chun Wai		Fung Chi Yip (
Date:	25-Feb-2019	Date:	26-Feb-2019	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港貴竹筑道37號利進中心12葉 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong,

E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0116 02		Page	1	of	2
Item tested						
Description:	Sound Level Mete	er (Type 1)	Microphone		Preamp	
Manufacturer:	B & K		B&K		B&K	
Type/Model No.:	2250L		4950		ZC0032	
Serial/Equipment No.:	3002695		2940839		18582	
Adaptors used:			10 10 10 10 10 10 10 10 10 10 10 10 10 1		10 con escal 20	
Item submitted by						
Customer Name:	Lam Geotechnics	Ltd.				
Address of Customer:	-					
Request No.:	Same					
Date of receipt:	16-Jan-2019					
Date of test:	17-Jan-2019					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial No.	Expiry Date:		Traceab	e to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019		CIGISME	C
Signal generator	DS 360	33873	24-Apr-2019		CEPREI	
Signal generator	DS 360	61227	26-Dec-2019		CEPREI	
Ambient conditions						
Temperature:	21 ± 1 *C					
Relative humidity:	50 ± 10 %					
Air pressure:	1005 ± 5 hPa					

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

đ. Fend Jungi

19-Jan-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soits & Materials Engineering Co., Ltd.

Approved Signatory:

Form No.CARP152-Mesue VRev C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 挹 黃 竹 坑 道 3 7 號 利 嶐 中 心 1 2 條 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

19CA0116-02

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Page 2 of 2

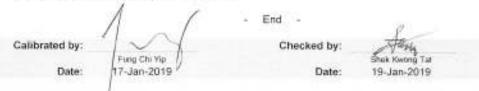
1. Electrical Tests

Certificate No.;

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range . Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
AN INCOME AN INCOME	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests


The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Solts & Materials Engineering Co., Ltd.

Form No.CARP152 2/lssue 1/Rev C/01/02/2007

余字合試験有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Website: www.cigismec.com

Certificate No.:	cate No.: 18CA0413 02			1 of	2
Item tested					
Description:	Sound Level Met	ter (Type 1)	Microphone	Pream	p
Manufacturer:	B & K		B&K	8 & K	
Type/Model No.:	2250-L		4950	ZC003	2
Serial/Equipment No.:	2722311		2698703	13321	
Adaptors used:		57			
Item submitted by					
Customer Name:	Lam Geotechnic	s Ltd.			
Address of Customer:	. F.				
Request No.:	-				
Date of receipt:	13-Apr-2018				
Date of test:	18-Apr-2018				
Reference equipment	used in the cali	bration			
Description:	Model:	Serial No.	Expiry Date:	Tracea	able to:
Multi function sound calibrator	B&K 4226	2288444	08-Sep-2018	CIGISM	IEC
			25-Apr-2018	CEPRE	

Ambient conditions

Temperature:	20 ± 1 °C		
Relative humidity:	50 ± 10 %		
Air pressure:	1000 ± 5 hPa		

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soits & Materials Engineering Co. Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港首竹坑道 37號利達中心 12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0413 02

```
Page 2
```

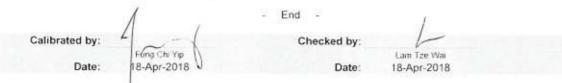
2 of 2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	А	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
10 A B	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests


The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Materials Engineering Co. Ltd

Form No.CARP152-2/Issue 1/Rev C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港貴竹筑道37號利進中心12葉 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong,

E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0116 02		Page	1	of	2
Item tested						
Description:	Sound Level Mete	er (Type 1)	Microphone		Preamp	
Manufacturer:	B & K		B&K		B&K	
Type/Model No.:	2250L		4950		ZC0032	
Serial/Equipment No.:	3002695		2940839		18582	
Adaptors used:			10 10 10 10 10 10 10 10 10 10 10 10 10 1		10 con escal 20	
Item submitted by						
Customer Name:	Lam Geotechnics	Ltd.				
Address of Customer:	-					
Request No.:	Same					
Date of receipt:	16-Jan-2019					
Date of test:	17-Jan-2019					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial No.	Expiry Date:		Traceab	e to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019		CIGISME	C
Signal generator	DS 360	33873	24-Apr-2019		CEPREI	
Signal generator	DS 360	61227	26-Dec-2019		CEPREI	
Ambient conditions						
Temperature:	21 ± 1 *C					
Relative humidity:	50 ± 10 %					
Air pressure:	1005 ± 5 hPa					

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

đ. Fend Jungi

19-Jan-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soits & Materials Engineering Co., Ltd.

Approved Signatory:

Form No.CARP152-Mesue VRev C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 挹 黃 竹 坑 道 3 7 號 利 嶐 中 心 1 2 條 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

19CA0116-02

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Page 2 of 2

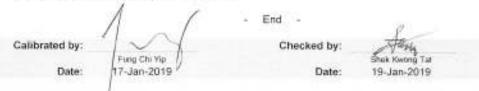
1. Electrical Tests

Certificate No.;

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range . Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
M. 1929 W. 18	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests


The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Solts & Materials Engineering Co., Ltd.

Form No.CARP152 2/lssue 1/Rev C/01/02/2007

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA0510 04		Page	1	of	2
Item tested						
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter (Type 1) Larson Davis LxT1 0004796		Microphone PCB 377B02 155507		Preamp PCB PRMLx 042621	
Item submitted by						
Customer Name: Address of Customer: Request No.: Date of receipt:	Lam Geotechnics - - 10-May-2018	Ltd				
Date of test:	11-May-2018					
Reference equipment	used in the calib	ration				
Description: Multi function sound calibrator Signal generator	Model: B&K 4226 DS 360	Serial No. 2288444 61227	Expiry Date: 08-Sep-2018 23-Apr-2019		Traceal CIGISME CEPREI	
Ambient conditions						
Temperature: Relative humidity: Air pressure:	21 ± 1 °C 50 ± 10 % 1005 ± 5 hPa					

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Fend Juna

Approved Signatory:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

C Soils & Materials Engineering Co., Ltd.

Form No CARP152-186506 1/Rev C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0510 04

Website: www.clgismec.com

Page

2 nf

1, **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
		and the second	cheertanity (dB)	Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	6.6
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	с	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass		
Sound exposure level				
Overload indication	SPL	10.070.7 Th	225.92	
	Leq	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz SPL	Pass Pass	0.4 0.4 0.3 0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3. Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level

C Sols & Materials Engineering Co. Ltd

Form No CARP152-24ssue 1/Rev C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港美行就道 37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA1114 02			Page	1	of	2
Item tested							
Description:	Sound Level Mete	r (Type 1)	20	Microphone			
Manufacturer:	B&K	A.S. 14		B&K			
Type/Model No.:	2236		8	4188			
Serial/Equipment No.:	2100736		£1	2288941			
Adaptors used:			£	S-			
tem submitted by							
Customer Name:	Lam Environment	al Service Ltd.					
Address of Customer:							
Request No.:	-						
Date of receipt:	14-Nov-2018						
Date of test:	15-Nov-2018						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.		Expiry Date:		Traceal	ale to:
Multi function sound calibrator	B&K 4228	2288444		23-Aug-2019		CIGISM	
Signal generator	DS 360	33873		24-Apr-2019		CEPREI	
Signal generator	DS 360	61227		23-Apr-2019		CEPREI	
Ambient conditions				Contra de las contra		2222-250-34	
Temperature:	20 ± 1 °C						
Relative humidity:	50 ± 10 %						
ir pressure:	1000 ± 5 hPa						
Test specifications							_

- and the lab calibration procedure SMTP004-CA-152. 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Date: 15-Nov-2018 Company Chop:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-18 num 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 唐 貴 竹 坑 钜 3 7 號 利 頃 中 心 1 2 機 12斤、Lander Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1114 02

2 of

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise		Pass	0.3	
Gen-generated house	A C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Encarry range for eed	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
, restruction to the start of the	c	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
11112 112 8 11 18 -	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
Service and the service of the servi	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	Anna	
Calibrated by:	~ 7	Checked by:	- 1-44	
Date:	Fung Chi Yip 15-Nov-2018	Date:	/Shek Kwong Tat 15-Nov-2018	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

ID Sote & Materials Engineering Co., UM

Form No CARP152-2/Issue 1/Rev C/01/02/2007

Calibration Certificate

Certificate Number 2018010851

Customer: LAM Environmental Services Ltd 11/F Centre Point 181-185 Gloucester Road Wanchai, , Hong Kong

Model Number	CAL20	0	Procedure Number	D0001	8385	
Serial Number	13098		Technician	Scott f	Montgo	mery
Test Results	Pass		Calibration Date	29 Oct 2018		
Initial Condition	Incoder	plo.	Calibration Due			
	Inoperable		Temperature	23	*C	± 0.3 °C
Description	Larson	Davis CAL200 Acoustic Calibrator	Humidity	34	%RH	± 3 %RH
			Static Pressure	101.2	kPa	±1 kPa
Evaluation Metho	od	The data is aquired by the insert volta circuit sensitivity. Data reported in dB	500 XX I X I X I X I X I X I X I X I X I	ne refere	nce mic	crophone's open
Compliance Standards		Compliant to Manufacturer Specificati IEC 60942:2017	ons per D0001.8190 and the ANSI S1.40-2006	following	standa	ards:

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a \$ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used		
Cal Date	Cal Due	Cal Standard
09/06/2018	09/06/2019	001021
04/10/2018	04/10/2019	001051
03/07/2018	03/07/2019	005446
09/20/2018	09/20/2019	006506
08/07/2018	08/07/2019	006507
05/10/2018	05/10/2019	006510
07/18/2018	07/18/2019	007368
	Cal Date 09/06/2018 04/10/2018 03/07/2018 09/20/2018 08/07/2018 05/10/2018	Cal Date Cal Due 09/06/2018 09/06/2019 04/10/2018 04/10/2019 03/07/2018 03/07/2019 09/20/2018 09/20/2019 08/07/2018 08/07/2019 08/07/2018 08/07/2019 05/10/2018 05/10/2019

Larson Davis, a division of PCB Piczotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

10/29/2018 1-43-01PM

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香 徳 黄 竹 坑 砲 3 7 號 利 達 中 心 1 2 樓 12F., Loader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong,

E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

24-Apr-2019

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA1220 02		Page:	1 of 2
Item tested				
Description:	Acoustical Calib	ator (Class 1)		
Manufacturer:	Larson Davis	2010/07/07/07/07		
Type/Model No.:	CAL200			
Serial/Equipment No.:	13128			
Adaptors used:	00 200 500 15			
Item submitted by				
Curstomer:	Lam Environmer	tal Service Ltd.		
Address of Customer:				
Request No.:	an a			
Date of receipt:	20-Dec-2018			
Date of test:	28-Dec-2018			
Reference equipment	used in the cali	bration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	20-Apr-2019	SCL
Preamplifier	B&K 2673	2239857	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	89038	GB41300350	23-Apr-2019	CEPREI

Ambient conditions

Universal counter

Temperature:	20 ± 1 °C		
Relative humidity:	50 ± 10 %		
Air pressure:	1000 ± 5 hPa		

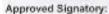
53132A

Test specifications

1. The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

MY40003662

- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- З, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference. pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.


Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942, 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

al

Fend

Jungi

29-Dec-2018 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soits & Material's Engineering Coll Ltd.

Farm No. CARP106-54ssue 1/Rev. Dt01/03/2007

CEPREI

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 進 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1220 02

2 Page:

Measured Sound Pressure Level 1.

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	93.84	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.006 dB

Estimated expanded uncertainty

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 999.4 Hz		
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2	

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was

At 1000 Hz	TND = 0.4%
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	Λ	- End -	1
Calibrated by:	$1 - \chi$	Checked by:	Hall
Date:	Fung Chi Yej 28-Dec-2018	Date:	Shek Kwong Tat 29-Dec-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

ID Solis & Materials Engineering Co., Ltd.

Form No.CARP198-24soue 1/Rev.CI01/05/2005